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Introduction 
A framework for a great deal of our modern under- 

standing was laid out in 1927 when Born and Oppen- 
heimerl legitimized the concept of the potential energy 
surface. They noted that, because of the disparity in 
the masses of the electrons and the nuclei which com- 
pose a molecule, the former will adjust very nearly in- 
stantly to small displacements of the latter. The nuclei 
will thus “see” a more or less well-defined set of forces, 
independent of their own velocity. These forces could 
then be used to define a potential surface and so to 
visualize those kinds of changes we call chemistry. 

Five years later Pelzer and Wigner2 provided an es- 
sential elaboration when they suggested that chemical 
reactions are mediated by the need to traverse a saddle 
point on such a Born-Oppenheimer surface. It re- 
mained nevertheless for Henry Eyring3p4 to make 
something concrete of this proposal. He postulated that 
the only important motion in the saddle point was 
confined to a single coordinate. It could be identified 
with the direction of steepest descent in the potential 
energy. He called this the reaction coordinate and 
supposed its allowable energy levels to be those of a 
one-dimensional box. He was then able to calculate rate 
constants. It was that simple-daring in 1935 and as- 
tonishing to this day. 

In linking the topology of potential surfaces with 
macroscopic change, Eyring’s construct has become one 
of the cornerstones of modern chemistry. Direct ex- 
perimental manifestations of the reaction coordinate 
would thus be pedagogically useful but are not easily 
cited. We shall argue below that Eyring’s formulation 
can find palpable expression in the kinetic energy dis- 
tribution of the fragments from a unimolecular reaction. 
In making this argument, we will cite evidence from the 
literature, some of which is now over 15 years old. Since 
then there has been a great deal of interest in spec- 
troscopic probes of the transition state. If a kinetic 
energy distribution can offer just such a glimpse of the 
reaction coordinate, then this perspective merits em- 
phasis. But we are also concerned here with an ap- 
plication of these distributions which has only recently 
come to light-that they can be used to assign a tem- 
perature to the transition state. We therefore go to  
some length to establish the linkage from kinetic energy 
distributions to both the reaction coordinate and 
thermometry. 
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Unimolecular Reaction Theory 
The central paint is elementary. Standard unimo- 

lecular theory5p6 assumes that a collection of reacting 
systems, each of some well-defined energy E ,  may be 
represented by an equilibrium ensemble. This should 
pertain also to any separable part of a system, and thus 
to a reaction coordinate. If the degrees of freedom 
orthogonal to this coordinate are numerous enough (and 
the total energy sufficiently large) as to constitute a heat 
bath, then an equilibrium distribution among its energy 
levels will be that of a one-dimensional Maxwell- 
Boltzmann gas. The rate at which systems pass through 
the saddle point will be weighted, however, by their 
velocity; the distribution in the flux emerging from the 
transition state will then be that of a two-dimensional 
gas-and hence an exponentially decreasing distribution 
in energya7 

Figure 1 illustrates8 the kinetic energy distribution9 
of the fragments from the reaction 

(1) 

The energy of the parent ion was in this case known and 
Well-defined. The distribution is seen, without too close 
an inspection, to be a monotonically and very nearly an 
exponentially decreasing function of the energy. 

Other examples of such distributions exist. Careful 
scrutiny will nevertheless be needed before these can 
be accepted as reflections of a reaction coordinate. We 
pass over, for example, several reports1+l4 of kinetic 
energy distributions of the fragments produced by the 
photoexcitation of van der Waals molecules. These are 
often said to be of the form of Figure 1 and hence would 
seem consistent with Eyring’s treatment. The energies 
in these experiments were, however, much too small to 
support any sort of ”infinite” heat bath. The reported 
kinetic energy distributions are in fact quite unintel- 
ligible in terms of the ideas which concern us here. 

C4H6+ --+ C3H3+ + CH3 
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Figure 1. Comparison of the observed kinetic energy release 
distribution from metastable C4H6+ (points), from ref 9, with 
predictions of unimolecular reaction theory. From ref 8. 

The construction of the solid line in Figure 1 made 
use (in a way we shall describe shortly) of actual 
phase-space calculations and hence is legitimate on the 
above account. Close inspection of it, and of the un- 
derlying data, will nevertheless show that each goes 
through a maximum at low energies. We therefore 
focus on this feature. 

Experimental measurements are made after the 
fragments have separated to infinity, whereas saddle 
points surely occur at smaller separations. A true saddle 
point will indeed be followed by a drop in the potential 
energy. What will happen to the relative kinetic energy 
of the fragments in negotiating this drop? 

One attractive supposition is that the decrease will 
simply get added on to the kinetic energy already 
present in the reaction coordinate. If so, we would still 
expect to see at  infinite separation an exponentially 
decreasing distribution, but one whose origin is dis- 
placed outward from the zero of energy. 

In suggesting the plausibility of this model, Tau- 
bert15J6 recognized that it waa little more than a guess. 
His cautionary note has not always been heeded- 
sometimes with unfortunate consequences. Neverthe- 
less, the model is not without foundation. Let us sup- 
pose that the potential energy between two fragments 
is of the form 

( 2 )  

The first term on the right-hand side represents some 
sort of (ultimately attractive) Born-Oppenheimer po- 
tential, a function only of the radial separation. It is 
often taken as proportional to an inverse power of the 
separation, but this is by no means necessary for what 
follows. The second term describes a centrifugal re- 
pulsion. It contains L, the orbiting angular momentum 
quantum number, and p, the reduced mass of the two 
fragments. When the attractive term in eq 2 is of 
sufficiently short range, the potential will have a max- 
imum as a function of the radial separation. This 
criterion can then be used to locate the transition 
state.17J8 V(r t ,L ) ,  the potential energy at the maxi- 

(15) Taubert, R. Z. Naturforsch., A: Astrophys., Phys. Phys. Chem. 

(16) Taubert, R. Z. Naturforsch., A: Astrophys., Phys. Phys. Chem. 

V = VJr)  + L(L + l )hz /2prz  

1961,16A, 1394. 

1964,19A, 911. 

mum, will give the height of the saddle point above the 
potential at infinite separation. It is also the energy 
which must be added to the kinetic energy at the saddle 
point to give that which will be observed. 

One can thus envisage circumstances in which Tau- 
bert's conjecture will be valid. Let us consider then a 
molecule with some initial angular momentum, indi- 
cated by the quantum number Jo, and an energy, E,  
sufficient to permit dissociation to some pair of prod- 
ucts. These two quantities must of course be conserved 
during the reaction. We then use unimolecular reaction 
t h e ~ r y l ~ ~ ~ ~  to calculate the rate of dissociation to the 
array of possible final states of the product consistent 
with the conservation laws. In doing so we ignore at  
first any restrictions which might be interposed by a 
putative activation energy. This might be called a 
phase-space calculation.21 It makes use of nothing 
other than thermodynamics and microscopic reversi- 
bility. In particular, it does not presuppose the Eyring 
model. 

Of these final states we then focus on a subset com- 
prising those which are reached by some particular 
value of the orbiting quantum number, L. It is found 
that the kinetic energy distribution among the final 
states within this subset is predicted to be roughly of 
the form 

where the parameter p may be a function only of L, Jo, 
and E,  the parameters which define the subset. In 
practice, it is an important function only of the energy. 
Taking an appropriate average over all values of L 
(compatible with the given Jo and E ) ,  in order to get 
something which might be measurable, thus yields7 a 
result also of the form of eq 3. 

We retreat from this step, however, in order to con- 
sider the role of the activation energies defined earlier. 
They will blockz2 all of the bimolecular association 
channels for which the initial kinetic energy is less than 
the V ( L ) .  Accordingly, all of the unimolecular disso- 
ciation channels for which the final kinetic energy is less 
than this V ( L )  will also be blocked. The distribution 
of the survivors will be truncated, given by 

(4) 
and thus will still be an exponential in the kinetic en- 
ergy at the transition state. Experiments which are 
compatible with such a model might then be said to 
evince the Eyring picture. 

The solid line in Figure 1 was calculated in just this 
way. Its shape, in particular its characteristic depletion 
at low energies, arises from a superposition of a large 
number of quasi-exponential functions, all truncated 
to one degree or another. 

Each truncation, and the net depletion, will be lesser 
or greater as the term in the potential energy repre- 
senting attraction is large or small. The calculation in 
Figure 1 presupposed a relatively strong ion induced- 
dipole source of attraction. The depletion is scarcely 

4, 479. 

275. 
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~ ( 4  - expf-P[c - vt(L)IJ 
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Figure 2. Predicted kinetic energy spectra for reaction 6 a t  
constant energy but varying angular momentum. From ref 31. 

evident. By contrast, one predictsz3 for symmetric 
fissioning via a flat "hard-sphere" potential a kinetic 
energy distribution of the form 

(54  
and for a highly asymmetric fissioning 

~ ( € 1  - e exp(-Pc) (5b) 
Experiments which measure the kinetic energy release, 
during evaporation following photoexcitation of a cold 
droplet, could be used to test these forms. The deple- 
tions should be readily discernible. 
The Role of Angular Momentum 

The first term on the right-hand side of eq 5a is the 
phase-space result. The second term then corrects it 
€or the Langevin potential barriers. This separation 
into just two terms occurs only when it is assumed that 
Jo = 0, i.e., that the parent molecule is not rotating. 

The calculation of the solid line in Figure 1 also as- 
sumed a rotationless progenitor. This will often be a 
good approximation. Photoexcitation and electron-im- 
pact excitation are accompanied by strong selection 
rules. A molecule which is initially cold will not rotate 
much following excitation. 

In other contexts this will be a very bad approxima- 
tion. Many worke r~~~-~O have discussed, for example, 
the kinetic energy release in reactions such as 

C4HB' .-* C3H5+ + CH3 (6) 
where the parent molecule itself had been prepared by 
chemical activation, in this case 

(7) 
Here the C4H8+ population will contain components 
with large amounts of angular momentum. Further, its 
presence can have profound effects on the kinetic en- 
ergy release. 

p(4 - exp(-B4 - exp(-6Pt) 

C2H4' + CzH4 - C4Hs+ 

(23) Klota, C. E. Abstracts of Papers, XIth International Symposium 

(24) Safron, S. A.; Weinstein, N. D.; Herschbach, D. R. Chem. Phys. 
on Molecular Beams, Edinburgh, 1987, to be published. 
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Phys. Lett. 1972, 12, 569. 
Marcus, R. A. J. Chem. Phys. 1975,62, 1372. 
Klota, C. E. J.  Chem. Phys. 1976,64,4269. 
Klota, C. E.; Mintz, D.; Baer, T. J. Chem. Phys. 1977,66, 5100. 
Chesnavich, W. J.; Bowers, M. T. J. Am. Chem. Soc. 1976, 98, 

Chesnavich, W. J.; Bowers, M. T. J.  Chem. Phys. 1977, 66, 2306. 

Figure 2 contains the results of a systematic study31 
of this effect. Increasing angular momentum enor- 
mously increases the depletion at low energies. This 
is easily understood. The initial momentum, indicated 
by Jo, must be disposed of either as rotational excitation 
of the products or via orbiting angular momentum. A 
large fraction of the available exit channels implicates 
the latter, which in turn carries with it an activation 
energy and hence depletion. 

A simple example of this can be given. When all of 
the degrees of freedom of a molecule are at the same 
well-defined temperature, and a dissociation occurs via 
a hard-sphere potential, then elementary considerations 
lead to a kinetic energy release distribution of the form 

p(4 - e exp(-e/kT) (8) 

regardless of the product geometries. The depletion will 
then be even more evident than that described by eq 
5a. 

We emphasize that these large depletions do not 
signal any departure from Eyring's treatment of the 
reaction coordinate. They obscure the connection, 
however, and render such measurements less convincing 
in support of it. 

Transmission Coefficients 
The assumption was made earlier that all of the exit 

channels blocked by a potential barrier will not occur, 
while those classically permitted will proceed unim- 
peded. This is surely too drastic: nature abhors dis- 
continuities. We must examine more carefully this 
all-or-nothing dichotomy. 

In order to do so, it will be useful to consider the 
bimolecular association reaction which is the reverse of 
the unimolecular process of interest. We focus on a pair 
of collision partners in states i and j and write their 
collision cross section to yield a bound entity as 

(9)  

where X is the de Broglie wavelength associated with 
their relative motion and L is, as before, the orbiting 
angular momentum. The factor Ti, is the transmission 
coefficient for the reaction. It will be a function of L 
and of t, the relative kinetic energy at infinite separa- 
tion. 

The cross section in eq 9 is understood to comprise 
all of the final angular momentum states compatible 
with the initial angular momentum and with L. The 
phase-space limit, which led to eq 3 and to the first term 
on the right-hand side of eq 5a, is then obtained by 
setting Ti, equal to unity for all energy-conserving 
collisions. The Langevin model amends this by setting 
those T,, equal to zero for which the initial kinetic en- 
ergy is less than V .  It is this sharp demarcation in 
transmission coefficients which we must address. 

Tunneling through centrifugal barriers is well-known. 
An instructive example is the metastable fragmentation 
of the methane ion: 

(10) 
 measurement^^^ of the kinetic energy released during 

(31) Klots, C. E. In Kinetics of Zon-Molecule Reactcons; Ausloos, P., 

(32) Illies, A. J.; Jarrold, M. F.; Bowers, M. T. J.  Am. Chem. Soc. 1982, 

(+X2),,L = (2L + 1)T,,(L,e) 

slow 
CH4+ - CH3' + H 

Ed.; Plenum: New York, 1979; p 69. 

104,3587. 
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Figure 3. Comparison of average kinetic energy release in the 
metastable fragmentation of methane ions (points), from ref 32, 
with the average centrifugal barriers aa a function of temperature, 
from ref 33. 

this process are illustrated in Figure 3. The solid line 
represents the average potential barrier height33 for 
those ions which can dissociate only via a tunneling 
mechanism. A decomposition fragment, in penetrating 
and emerging from such a barrier, will have an energy 
less than and, in the absence of additional knowledge, 
equal perhaps to one-half of it. The observed average 
energy releases clearly exceed these expectations. This 
arises, at  least in part,32 because experiment samples 
only those ions which dissociate in a narrow metastable 
window. The energy release during this period may 
then differ considerably from the time-integrated av- 
erage. 

The strong dependence on temperature of the time- 
integrated average is nevertheless reflected by both 
experiment and more detailed  calculation^.^^ This is 
then a useful signature for the tunneling mechanism 
and confirms its presence here. But one must then 
wonder if a tunneling mechanism made a contribution 
to, for example, the spectrum in Figure 1. 

The answer is almost certainly no! The CH2D2+ ion 
can fragment in two ways: 

(IW 
--+ CHD2+ + H (W 

CH2D2’ - CH2D+ + D 

Only the second route is observed to occur via the 
nonclassical mechanism. This however, is not due to 
the usual mass dependence of tunneling. Observe in 
Figure 3, for example, the evidence for a facile disso- 
ciation of CD4+. Its absolute abundance is every bit as 
large as that of CH4+. The reason is instead% that when 
a parent CH2D2+ ion has just enough energy to disso- 
ciate via tunneling along the first route, then because 
of zero-point energy differences it has more than enough 
energy to proceed via an open channel along the second. 
When classically allowed channels are open, they will 
overwhelm the tunneling mechanism. 

The complement of tunneling beneath a saddle point 
is the reflection of a classically allowed trajectory upon 

(33) Klota, C. E. J. Phys. Chem. 1971, 75, 1526. 
(34) Klota, C. E. Chem. Phys. Lett. 1971,20,422. 

passage above the potential surface. In discussing this 
it is necessary to distinguish two distinct phenomena. 
One is classical and the other of an intrinsically wave- 
mechanical origin. 

Eyring recognized in his landmark paper the possi- 
bility that a system, having passed through the tran- 
sition state, might subsequently be deflected back to- 
ward its origin by some feature of the potential surface. 
If this occurred, and with a probability dependent on 
the kinetic energy, then the ensuing distribution would 
be distorted. 

The high-speed computer has made feasible the tra- 
jectory calculations which can test this. These shoW35*36 
that, at  low total energies, transmission is complete; at 
high energies, and thus perhaps at high kinetic energy 
in the reaction coordinate, reflection becomes discer- 
nible. 

There are instances where the kinetic energy release 
is actually less than that calculated by the means out- 
lined earlier. A depletion of the high-energy tail by 
reflection back across the saddle point could account 
for this. It seems unlikely though that any reaction 
encumbered by this sort of reflection would have a 
potential surface simple enough to conform to Taubert’s 
conjecture. These instances thus cannot be simply ra- 
tionalized and so underscore an earlier remark: an 
observed quasi-two-dimensional Maxwellian distribu- 
tion in the kinetic energy release is not necessarily a 
manifestation of the reaction coordinate. Corroboration 
by way of consistency with some plausible model is 
surely also needed. 

A second category of reflection, and one which is 
coextensive to the phenomenon of tunneling, can also 
play a role in unimolecular reactions. A number of 
molecules, exemplified by SF6, are almost-perfect sinks 
for s-wave electrons; thus the reaction 

e + SFG - SF6- (12) 
seems to occur with a near-unit transmission coefficient 
when L, the orbiting angular momentum quantum 
number, is zero. A t  very low kinetic energy, however, 
the rate is less. A simple expression37 has been proposed 
to describe this drop-off in the transmission coefficient. 

Its underlying model is closely related to that used 
earlier34 to estimate tunneling through centrifugal 
barriers. Attempts to identify its role in the unimo- 
lecular reaction channel-the reverse of eq 12-have 
been made but remain unconvincing. Careful mea- 
surement~~* of the attachment reaction nevertheless 
seem to be in excellent agreement with its predictions. 
A nearly ubiquitous role for nonintegral transmission 
coefficients is accordingly indicated. 

They are expected, in particular, to attend those 
short-range potentials which can yield a maximum in 
eq 2. The leading edge of a truncated kinetic energy 
distribution will then be blurred, by reflection as well 
as by tunneling. The distribution itself will go smoothly 
to zero. 

Nevertheless, this source of reflection could also be 
neglected in the construction of Figure 1. The circum- 

(36) Pechukas, P.; McLafferty, F. J. J. Chem. Phys. 1973,58, 1622. 
(36) Chapman, S.; Hornstein, S. M.; Miller, W. H. J. Am. Chem. Soc. 

(37) Klota, C. E. Chem. Phys. Lett. 1976,38,61. 
(38) zollara, B. G.; Higgs, C.; Lu, F.; Walter, C. W.; Gray, L. G.; Smith, 

K. A.; Dunning, F. B.; Stebbings, R. F. Phys. Reo. A 1985, 32, 3330. 

1975, 97, 892. 
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stances of reaction 12 are exceptional in having per- 
mitted a nonintegral transmission coefficient to be 
distinguished. When L is greater than zero, this blur- 
ring will always be less than the truncation due ts the 
barrier itself. And when the reduced mass in the re- 
action coordinate is much greater than that of an 
electron, the blurring will be indiscernibly slight. This 
criterion for the reduced mass is, of course, a prere- 
quisite of the potential surface itself. 

The Reaction Coordinate as a Molecular 
Thermometer 

We spoke before of the reaction coordinate being 
coupled to the other degrees of freedom which then 
serve as a sort of heat bath. Yet the molecules we have 
been discussing are quite finite in both size and energy. 
They can thus constitute at  best only a tenuous heat 
bath, and any ensuing kinetic energy distribution can- 
not strictly be that of a two-dimensional Maxwellian. 
Formulas such as in eq 3-5 are then to be understood 
as having no more than a schematic validity. 

For systems which are circumscribed in energy and 
angular momentum it is nevertheless still possible to 
define a parameter which has many of the properties 
of a temperature. Thus, in calculating rate constants 
and kinetic energy distributions, one makes use of a 
quantity w(E) ,  the number of quantum states of a 
system with energy less than or equal to E. The 
phase-space term on the right-hand side of eq 5, for 
example, derives from just such an enumeration of the 
final states compatible with the conservation laws. 
Properly, it should be evaluated from27 

po(t) - dw(E-t)/dE (13) 

An average 0, defined by 
B = -d In po(t)/dt 

p = d In w(E)/dE 

S = kB In w(E) 

(14) 

is then given by 
(15) 

With the plausible definition of an entropy 
(16) 

the identification of as a reciprocal temperature is 
then seen to be quite tenable. 

There is a second understanding which permits an 
even more direct identification. The average kinetic 
energy, defined by the phase-space limit, eq 13, and 
hence given by 

z = € P O ( E )  (17a) 

= LE&) dx/w(E) (17b) 

might plausibly be used to define a kBT. It is in fact 
equal7 to that temperature at  which a canonical en- 
semble of transition states would have an average en- 
ergy equal to the particular and well-defined total en- 
ergy E. 

The temperatures defined by these two prescriptions 
will be very nearly equal, even for a molecule comprising 
only a small number of degrees of freedom. Provided 
that it conforms sufficiently to that of a two-dimen- 
sional Maxwellian gas, a kinetic energy distribution can 
then be used as an unambiguous thermometer. If it can 
be corroborated by a plausible model, its reading may 

also be meaningful. Even more satisfying would be an 
agreement with another well-calibrated thermometer. 
Just this possibility has recently become available. 

An investigation of evaporation from isolated mo- 
lecular a g g r e g a t e ~ ~ ~ i ~  led to a simple rule; on a typical 
laboratory time scale of 10 hs, the temperature of an 
isolated and evaporating cluster (to the extent that one 
can be defined) will be given by 

lzBT = mevap/25 (18) 

This relation will be reminiscent of Trouton’s rule, and 
that is in fact how it can be rationalized. 

Now, for very large clusters temperatures can be 
measured by macroscopic means. The results are in 
good agreement@ with eq 18. For smaller clusters these 
methods are not possible. But measurements of the 
average kinetic energy of evaporation, when interpreted 
by way of eq 8, are again consistent@ with the rule. The 
two thermometers agree. 

Conclusion 
We see from this study that kinetic energy distribu- 

tions can provide a legitimate portrait of the reaction 
coordinate and a measure of a temperature. The op- 
timal conditions for a convincing likeness are that the 
dissociation occur along an attractive and well-defined 
potential surface, the initial angular momentum be 
small, and the initial energy be well above the disso- 
ciation asymptote. It is especially satisfying that studies 
of unimolecular reactions have aided in the delineation 
of these conditions. 

The dissociation of the C4H6+ ion has served here as 
a useful example. One might equally well have cited 
measurements on C2H3Br+,41 NF3+,42 C2HbI+,43 
C&&!N+,27144 CH4+,45 and c3H71+.46 The list is in- 
c0mplete.4~ Nor does it contain reference to the kinetic 
energy distributions which have been measured follow- 
ing the breakup of a chemically prepared collision 
complex. As noted earlier, the connection with the 
reaction coordinate tends to be obscured by the initial 
angular momentum which is invariably present. Nev- 
ertheless, the good agreement often f o ~ n d ~ ~ - ~ O  between 
theory and experiment cannot be entirely fortuitous. 

The ability to assign a temperature to a transition 
state is of interest for two reasons. It may be used to 
characterize evaporating bodies even when they cannot 
be described by a canonical ensemble.39@ It may also 
be related to the variation of unimotecular rate con- 
stants with respect to small changes in the activation 
energy.48 

Pedagogical value and thermometric applications 
aside, have we learned anything from these studies? It 
is interesting of course that reactions exist where the 
transition state is “loose”--i.e., where the relevant po- 

(39) Klota, C. E. 2. Phys. D 1987,5, 83. 
(40) Klota, C. E. Nature (London) 1987,327, 222. 
(41) Miller, B. E.; Baer, T. J. Chem. Phys. 1984,85, 39. 
(42) Mansell, P. I.; Danby, C. John; Powis, P. J. Chem. Soc., Faraday 

(43) Baer, T.; Buchler, U.; Klota, C. E. J.  Chim. Phys. Phys.-Chim. 

(44) Chesnavich, W .  J.; Bowers, M. T. J. Am. Chem. SOC. 1977, 99, 
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tential surface is indeed of the form of eq 2. But then 
the kinetic energy distributions which ensue can also 
be rationalized with a simple collision theory. The more 
discernible the reaction coordinate is, the less unique 
a construct it would seem to be. 

In fact, we have learned something useful. This is 
because, despite these real successes, a serious caveat 
must be attached to all of the above. Unimolecular 
reaction theory can calculate absolute rate constants as 
well as probability distributions among the final chan- 
nels. In particular, this can be using the same 
centrifugal barriers described earlier to define the 
transition state. If one assumes that all exit channels 
are open, one obtains a phase-space rate constant. It 
constitutes a natural upper limitu to unimolecular rates. 
Consideration of those channels which are blocked by 
the centrifugal barriers will then lower the calculated 
rates. Nevertheless, they invariably remain much 
higher than those given by experiment. 

Chesnavich and Bowersso have proposed a reconcil- 
iation: many and perhaps most unimolecular reactions 
must traverse two transition states. One is a t  a true 
saddle point in the energy, just as Eyring had envisaged. 

(49) Nota, C.  E. Z. Naturforech., A Phye., Phys. Chem., Kosmophys. 
1972.27A. 663. 
~ (5b) Cheanavich, W. J.; Base, L.; Su, T.; Bowers, M. T. J. Chem. Phye. 
1981, 74, 2228. 

If it lies at sufficiently large a radial separation, the 
emerging kinetic energy distribution will reflect this 
geometry. But then at smaller separations a second 
bottleneck in phase-space determines the rate con- 
stants. The implication is that incoming trajectories 
can traverse the saddle point only to be subsequently 
reflected. Equivalently, the rapid intramolecular vi- 
brational relaxation which underlies unimolecular re- 
action theory would seem not to extend out to the 
saddle point. 

This resolution is plausible but not without irony. 
Eyring’s original intention was to calculate rate con- 
stants. This was to be done using the saddle point and 
its local properties. Perturbations such as tunneling, 
important or otherwise, were to be similarly compre- 
hended. 

If, as it appears, this does not suffice, further-ranging 
constructs such as variational transition-state theory 
may still prove adequate. Something of great simplicity 
will nevertheless have been lost. Thus, the study of 
unimolecular reactions, in rendering a unique prospect 
of the saddle point, will be seen also to have prompted 
a challenge to its relevance. 
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